Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Oxidized or Reduced Cytochrome c and Axial Ligand Variants All Form the Apoptosome in Vitro.

Biochemistry 2017 June 7
Cytochrome c (cyt c) has two important roles in vertebrates: mitochondrial electron transport and activating the intrinsic cell death pathway (apoptosis). To initiate cell death, cyt c dissociates from the inner mitochondrial membrane and migrates to the cytosol. In the cytosol, cyt c interacts stoichiometrically with apoptotic protease activating factor 1 (Apaf-1) and upon ATP binding induces formation of the heptameric apoptosome. It is not clear however what the redox state of cyt c is when it functions as the "active signal" for apoptosis. Some reports have indicated that only ferri (i.e., oxidized Fe3+ heme) but not ferro (reduced, Fe2+ heme) cyt c forms the apoptosome. Facilitated by our recently described recombinant system for synthesizing novel human cyt c proteins, we use a panel of cyt c axial ligand variants that exhibit a broad range of redox potentials. These variants exist in different redox states. Here we show that cyt c wild type and cyt c H19M (reduced state) and cyt c M81A and cyt c M81H (oxidized state) all bind to Apaf-1 and form the apoptosome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app