Add like
Add dislike
Add to saved papers

Characterization of the Isothermal Compression Behavior of LLM-172.

The high-pressure behavior of 3,4-bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole (LLM-172) has been studied to 36 GPa by Raman spectroscopy and 50 GPa by X-ray diffraction. The Raman spectra and calculated unit-cell volumes at select pressures show reasonable qualitative agreement with first-principles density functional theory calculations. Raman peaks exhibit a gradual broadening and loss of intensity upon compression to near 20 GPa. Above 20 GPa, most Raman features disappear with the exception of modes associated with the skeletal ring modes. These modes were found to persist (although with low intensity) to 36 GPa. Because these modes exhibit very low compressibility over the pressure range studied, it is speculated that the ring structure is very stable. The X-ray diffraction suggests that while the crystal maintains an orthorhombic structure to near 40 GPa, it gradually undergoes a decomposition/amorphization beginning near 10 GPa. Analysis of the Raman results suggests that decomposition proceeds through isomerization, which leads to the formation of a C-O-N-O group rather than ring cleavage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app