Add like
Add dislike
Add to saved papers

Ca 2+ -Cl - Association in Water Revisited: the Role of Cation Hydration.

We investigate the dissociation of a Ca2+ -Cl- pair in water using classical molecular dynamics simulations with a polarizable interaction potential, parameterized from ab initio calculations. By computing the potential of mean force as a function not only of the interionic distance but also of the coordination numbers by water molecules, we show that it is necessary to use a collective variable describing the cation hydration in order to capture the dissociation mechanism. In the contact ion pair, the Ca2+ cation has a first coordination sphere containing 5 or 6 water molecules. The minimum free-energy path for dissociation involves a two-step process: First one or two additional water molecules enter the cation coordination shell, increasing the coordination number up to 7 with an almost fixed interionic distance. Then the dissociation of the ionic pair occurs at this fixed coordination number.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app