Add like
Add dislike
Add to saved papers

Developing Polyamine-Based Peptide Amphiphiles with Tunable Morphology and Physicochemical Properties.

The ability to tune supramolecular properties such as size, morphology, or metabolic stability is of paramount importance in the field of supramolecular chemistry. Peptide amphiphiles (PAs) are a family of functional self-assembling biomaterials that have garnered widespread attention due to their broad applicability in medicine. PAs are generally comprised of an amino acid sequence connected to lipid tail(s) allowing them to self-assemble into supramolecular structures with diverse morphologies. Herein, this study describes the synthesis of a new class of polyamine-based "hybrid" PAs (PPAs) as novel self-assembling systems. The described molecules possess diverse polyamine head groups with the goal of tuning physicochemical properties. The findings indicate that small changes in the polyamine head groups result in altered PPA morphologies (nanofibers, micelles, nanoworms). The PPAs present a wide range of physicochemical characteristics, show superior resistance to aggregation, a diverse metabolic profile, and varied assembling kinetics. Most of the PPAs do not show toxicity in the human cells lines evaluated. The PPAs described herein hold promising potential as a safe and nontoxic option for drug delivery, targeting, and tissue engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app