Add like
Add dislike
Add to saved papers

Using principal component analysis and annual seasonal trend analysis to assess karst rocky desertification in southwestern China.

Increasing exploitation of karst resources is causing severe environmental degradation because of the fragility and vulnerability of karst areas. By integrating principal component analysis (PCA) with annual seasonal trend analysis (ASTA), this study assessed karst rocky desertification (KRD) within a spatial context. We first produced fractional vegetation cover (FVC) data from a moderate-resolution imaging spectroradiometer normalized difference vegetation index using a dimidiate pixel model. Then, we generated three main components of the annual FVC data using PCA. Subsequently, we generated the slope image of the annual seasonal trends of FVC using median trend analysis. Finally, we combined the three PCA components and annual seasonal trends of FVC with the incidence of KRD for each type of carbonate rock to classify KRD into one of four categories based on K-means cluster analysis: high, moderate, low, and none. The results of accuracy assessments indicated that this combination approach produced greater accuracy and more reasonable KRD mapping than the average FVC based on the vegetation coverage standard. The KRD map for 2010 indicated that the total area of KRD was 78.76 × 10(3) km(2), which constitutes about 4.06% of the eight southwest provinces of China. The largest KRD areas were found in Yunnan province. The combined PCA and ASTA approach was demonstrated to be an easily implemented, robust, and flexible method for the mapping and assessment of KRD, which can be used to enhance regional KRD management schemes or to address assessment of other environmental issues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app