Add like
Add dislike
Add to saved papers

Low-Voltage Photodetectors with High Responsivity Based on Solution-Processed Micrometer-Scale All-Inorganic Perovskite Nanoplatelets.

Small 2017 May 17
All-inorganic photodetectors based on scattered CsPbBr3 nanoplatelets with lateral dimension as large as 10 µm are fabricated, and the CsPbBr3 nanoplatelets are solution processed governed by a newly developed ion-exchange soldering mechanism. Under illumination of a 442 nm laser, the photoresponsivity of photodetectors based on these scattered CsPbBr3 nanoplatelets is as high as 34 A W(-1) , which is the largest value reported from all-inorganic perovskite photodetectors with an external driven voltage as small as 1.5 V. Moreover, the rise and fall times are 0.6 and 0.9 ms, respectively, which are comparable to most of the state-of-the-art all-inorganic perovskite-based photodetectors. All the material synthesis and device characterization are conducted at room temperature in ambient air. This work demonstrates that the solution-processed large CsPbBr3 nanoplatelets are attractive candidates to be applied in low-voltage, low-cost, ultra highly integrated optoelectronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app