Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mesporous 3C-SiC Hollow Fibers.

Scientific Reports 2017 May 16
In the present work, for the first time, we reported the exploration of mesoporous 3C-SiC hollow fibers via single-spinneret electrospinning of polyureasilazane (PSN) and polyvinylpyrrolidone (PVP) solution followed by high-temperature pyrolysis treatment. The resultant products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and N2 adsorption. The as-prepared hollow fibers with totally mesoporous walls were uniformly sized in diameter and high purity in morphology. They were composed of single-crystalline 3C-SiC nanoparticles with a surface area of 21.75 m2 /g and average pore diameter of ~34 nm. The PSN concentration played a determined role on the formation of hollow fibers rather than the conventional solid counterparts, enabling their growth in a tunable manner. A possible mechanism was proposed for the formation of mesoporous SiC hollow fiber.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app