Add like
Add dislike
Add to saved papers

Spread of competing viruses on heterogeneous networks.

In this paper, we propose a model where two strains compete with each other at the expense of common susceptible individuals on heterogeneous networks by using pair-wise approximation closed by the probability-generating function (PGF). All of the strains obey the susceptible-infected-recovered (SIR) mechanism. From a special perspective, we first study the dynamical behaviour of an SIR model closed by the PGF, and obtain the basic reproduction number via two methods. Then we build a model to study the spreading dynamics of competing viruses and discuss the conditions for the local stability of equilibria, which is different from the condition obtained by using the heterogeneous mean-field approach. Finally, we perform numerical simulations on Barabási-Albert networks to complement our theoretical research, and show some dynamical properties of the model with competing viruses.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app