Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

An asymmetric dimeric structure of TrmJ tRNA methyltransferase from Zymomonas mobilis with a flexible C-terminal dimer.

The tRNA methyltransferase J (TrmJ) and D (TrmD) catalyze the transferring reaction of a methyl group to the tRNA anticodon loop. They commonly have the N-terminal domain (NTD) and the C-terminal domain (CTD). Whereas two monomeric CTDs symmetrically interact with a dimeric NTD in TrmD, a CTD dimer has exhibited an asymmetric interaction with the NTD dimer in the presence of a product. The elucidated apo-structure of the full-length TrmJ from Zymomonas mobilis ZM4 shows a dimeric CTD that asymmetrically interacts with the NTD dimer, thereby distributing non-symmetrical potential charge on the both side of the protein surface. Comparison with the product-bound structures reveals a local re-orientation of the two arginine-containing loop at the active site, which interacts with the product. Further, the CTD dimers have diverse orientations compared to the NTD dimers, suggesting their flexibility. These data indicate that an asymmetric interaction between the NTD dimer and the CTD dimer is a common structural feature among TrmJ proteins, regardless of the presence of a substrate or a product.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app