Add like
Add dislike
Add to saved papers

A computational model of the [Formula: see text] transients and influence of buffering in guinea pig urinary bladder smooth muscle cells.

Many cellular events including electrical activity and muscle contraction are regulated and coordinated by intracellular [Formula: see text] concentration ([[Formula: see text]][Formula: see text]. In detrusor smooth muscle (DSM) cells, [[Formula: see text]]i is normally maintained at very low levels and rises transiently during signalling processes as a result of (i) influx from the extracellular space (mainly via L-type and T-type [Formula: see text] channels) and (ii) [Formula: see text] release from sarcoplasmic reticulum (SR) into the cytoplasm. Intracellular [Formula: see text] buffers, both fixed and diffusible, play a vital role in shaping the radial distribution of free [Formula: see text]. Our aim, in the work presented here, is to develop a mathematical model of [Formula: see text] buffering and diffusion and to generate [Formula: see text] transient in guinea pig DSM cells. The [Formula: see text] transient is generated using inward [Formula: see text] current that arises following voltage clamp and mediated by L-type and T-type [Formula: see text] channels. [Formula: see text] transient is obtained for different radial locations (or shells) of the DSM cytosol. This modeling study explores the levels of [[Formula: see text]]i achieved near the plasma membrane and in deeper locations. The [Formula: see text] transient generated in our model shows a high degree of similarity with experimental findings in terms of amplitude, duration and half-decay time. A number of different buffer properties such as concentration and mobility are tested for their effect on amplitude and shape of [Formula: see text] transient. The presence of fast buffer concentration in the cytosol markedly delays the rise of [[Formula: see text]]i in the core of the cell. Increase in the mobility of fast buffer slightly speeds up the redistribution of [Formula: see text]. To explore the model further, the role of plasma membrane [Formula: see text]-ATPase (PMCA) pump, sarcoplasmic/endoplasmic reticulum [Formula: see text]-ATPase (SERCA) pump and sodium calcium exchanger (NCX) on [Formula: see text] transient is studied and it is suggested that NCX may be of primary importance for the immediate lowering of [[Formula: see text]]i during the falling phase of a [Formula: see text] transient in DSM cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app