Add like
Add dislike
Add to saved papers

Remobilization Dynamics of Caffeine, Ciprofloxacin, and Propranolol following Evaporation-Induced Immobilization in Porous Media.

Changing weather conditions can cause cycles of wetting and drying in the unsaturated zone. When porewater evaporates, any nonvolatile solutes present in the pores will be driven to adsorb and ultimately precipitate on solid surfaces. When media are subsequently resaturated through rainfall infiltration, the remobilization of solutes likely depends on both the hydraulics of resaturation and the dynamics of dissolution processes. The focus of this work was to study the dynamics of remobilization of three different emerging contaminants (caffeine, ciprofloxacin, and propranolol) and two model compounds (fluorescein and sulforhodamine B) from porous media following evaporation of porewater. Remobilization column experiments were conducted to study this phenomenon and were evaluated using a finite difference model developed to simulate the adsorption-desorption dynamics during resaturation and elution. Results indicate that dissolution dynamics become increasingly important with increasing adsorption affinity for solid surfaces. Trends in observed elution behavior are not well-predicted from chemical properties, such as solubility. One of the most significant observations of the work is the presence of spikes in elution concentrations well above initial porewater concentration, resulting from the hydraulics of the resaturation process. The effect is most significant in highly mobile compounds that exhibit low adsorption affinity for solid surfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app