Add like
Add dislike
Add to saved papers

Mixing and the fractal geometry of piecewise isometries.

Mathematical concepts often have applicability in areas that may have surprised their original developers. This is the case with piecewise isometries (PWIs), which transform an object by cutting it into pieces that are then rearranged to reconstruct the original object, and which also provide a paradigm to study mixing via cutting and shuffling in physical sciences and engineering. Every PWI is characterized by a geometric structure called the exceptional set, E, whose complement comprises nonmixing regions in the domain. Varying the parameters that define the PWI changes both the structure of E as well as the degree of mixing the PWI produces, which begs the question of how to determine which parameters produce the best mixing. Motivated by mixing of yield stress materials, for example granular media, in physical systems, we use numerical simulations of PWIs on a hemispherical shell and examine how the fat fractal properties of E relate to the degree of mixing for any particular PWI. We present numerical evidence that the fractional coverage of E negatively correlates with the intensity of segregation, a standard measure for the degree of mixing, which suggests that fundamental properties of E such as fractional coverage can be used to predict the effectiveness of a particular PWI as a mixing mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app