Add like
Add dislike
Add to saved papers

Driven flow with exclusion and spin-dependent transport in graphenelike structures.

We present a simplified description for spin-dependent electronic transport in honeycomb-lattice structures with spin-orbit interactions, using generalizations of the stochastic nonequilibrium model known as the totally asymmetric simple exclusion process. Mean field theory and numerical simulations are used to study currents, density profiles, and current polarization in quasi-one-dimensional systems with open boundaries, and externally imposed particle injection (α) and ejection (β) rates. We investigate the influence of allowing for double site occupancy, according to Pauli's exclusion principle, on the behavior of the quantities of interest. We find that double occupancy shows strong signatures for specific combinations of rates, namely high α and low β, but otherwise its effects are quantitatively suppressed. Comments are made on the possible relevance of the present results to experiments on suitably doped graphenelike structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app