Add like
Add dislike
Add to saved papers

Resonance phonon approach to phonon relaxation time and mean free path in one-dimensional nonlinear lattices.

We extend a previously proposed resonance phonon approach that is based on the linear response theory. By studying the complex response function in depth, we work out the phonon relaxation time besides the oscillating frequency of the phonons in a few one-dimensional nonlinear lattices. The results in the large wave-number-k regime agree with the expectations of the effective phonon theory. However, in the small-k limit they follow different scaling laws. The phonon mean free path can also be calculated indirectly. It coincides well with that derived from the anharmonic phonon approach. A power-law divergent heat conduction, i.e., the heat conductivity κ depends on lattice length N by κ∼N^{β} with β>0, then is supported for the momentum-conserving lattices. Furthermore, this approach can be applied to diatomic lattices. So obtained relaxation time quantitatively agrees with that from the effective phonon theory. As for the mean free path, the resonance phonon approach can detect both the acoustic and the optical branches, whereas the anharmonic phonon approach can only detect a combined branch, i.e., the acoustic branch for small k and the optical branch for large k.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app