Add like
Add dislike
Add to saved papers

Statistical properties of the one-dimensional Burridge-Knopoff model of earthquakes obeying the rate- and state-dependent friction law.

Statistical properties of the one-dimensional spring-block (Burridge-Knopoff) model of earthquakes obeying the rate- and state-dependent friction law are studied by extensive computer simulations. The quantities computed include the magnitude distribution, the rupture-length distribution, the main shock recurrence-time distribution, the seismic-time correlations before and after the main shock, the mean slip amount, and the mean stress drop at the main shock, etc. Events of the model can be classified into two distinct categories. One tends to be unilateral with its epicenter located at the rim of the rupture zone of the preceding event, while the other tends to be bilateral with enhanced "characteristic" features resembling the so-called "asperity." For both types of events, the distribution of the rupture length L_{r} exhibits an exponential behavior at larger sizes, ≈exp[-L_{r}/L_{0}] with a characteristic "seismic correlation length" L_{0}. The mean slip as well as the mean stress drop tends to be rupture-length independent for larger events. The continuum limit of the model is examined, where the model is found to exhibit pronounced characteristic features. In the continuum limit, the characteristic rupture length L_{0} is estimated to be ∼100 [km]. This means that, even in a hypothetical homogenous infinite fault, events cannot be indefinitely large in the exponential sense, the upper limit being of order ∼10^{3} kilometers. Implications to real seismicity are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app