Add like
Add dislike
Add to saved papers

Refined Crystal Structure of Samia cynthia ricini Silk Fibroin Revealed by Solid-State NMR Investigations.

Biomacromolecules 2017 June 13
Samia cynthia ricini is one of the wild silkworms and its silk fibroin (SF) consists of alternatively repeating poly-l-alanine (PLA) sequences as crystalline domain and glycine-rich sequences as noncrystalline domain; the structure is similar to those of spider silk and other wild silkworm silks. In this paper, we proposed a new staggered model for the packing arrangement of the PLA sequence through the use of the Cambridge Serial Total Energy Package program and a comparison of the observed and calculated chemical shifts of the PLA sequence with the Gauge Including Projector Augmented Wave method. The new model was supported by the interatomic distance information from the cross peaks of Ala Cβ dipolar-assisted rotational resonance (DARR) spectrum of the PLA sequences in S. c. ricini SF fiber. In addition, three 13 C NMR peaks observed in the β-sheet region were assigned to the carbons with different environments in the same model, but not assigned to different β-sheet structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app