Add like
Add dislike
Add to saved papers

Visualizing Biological Copper Storage: The Importance of Thiolate-Coordinated Tetranuclear Clusters.

Angewandte Chemie 2017 July 18
Bacteria possess cytosolic proteins (Csp3s) capable of binding large quantities of copper and preventing toxicity. Crystal structures of a Csp3 plus increasing amounts of CuI provide atomic-level information about how a storage protein loads with metal ions. Many more sites are occupied than CuI equiv added, with binding by twelve central sites dominating. These can form [Cu4 (S-Cys)4 ] intermediates leading to [Cu4 (S-Cys)5 ]- , [Cu4 (S-Cys)6 ]2- , and [Cu4 (S-Cys)5 (O-Asn)]- clusters. Construction of the five CuI sites at the opening of the bundle lags behind the main core, and the two least accessible sites at the opposite end of the bundle are occupied last. Facile CuI cluster formation, reminiscent of that for inorganic complexes with organothiolate ligands, is largely avoided in biology but is used by proteins that store copper in the cytosol of prokaryotes and eukaryotes, where this reactivity is also key to toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app