Add like
Add dislike
Add to saved papers

Umov effect in single-scattering dust particles: effect of irregular shape.

Optics Letters 2017 May 16
The Umov effect manifests itself as an inverse correlation between the light-scattering maximum of positive polarization P<sub>max</sub> and the geometric albedo A of the target. In logarithmic scales, P<sub>max</sub> is linearly dependent on A. This effect has been long known in the optics of particulate surfaces and, recently, it was extended for the case of single-scattering dust particles whose size is comparable to the wavelength of the incident light. In this work, we investigate the effect of irregular shape on the Umov effect in single-scattering particles. Using the discrete dipole approximation (DDA), we model light scattering by two different types of irregularly shaped particles. Despite significant differences in their morphology, both types of particles reveal remarkably similar diagrams of log(P<sub>max</sub>) versus log(A). Moreover, in a power-law size distribution r<sup>-n</sup> with n=2.5-3.0, the Umov diagrams in both types of particles nearly coincide. This suggests little dependence on the shape of target particles in the retrieval of their reflectance using the Umov effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app