JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of IL-1β, TNF-α and IGF-1 on trans-endothelial passage of synthetic vectors through an in vitro vascular endothelial barrier of striated muscle.

Gene Therapy 2017 July
When administrated in the blood circulation, plasmid DNA (pDNA) complexed with synthetic vectors must pass through a vascular endothelium to transfect underlying tissues. Under inflammatory condition, cytokines can modify the endothelium integrity. Here, the trans-endothelial passage (TEP) of DNA complexes including polyplexes, lipoplexes and lipopolyplexes was investigated in the presence of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) or insulin-like growth factor-1 (IGF-1). The experiments were performed by using an in vitro model comprising a monolayer of mouse cardiac endothelial cells (MCEC) seeded on a trans-well insert and the transfection of C2C12 myoblasts cultured on the lower chamber as read out of TEP. We report that polyplexes made with a histidinylated derivative of lPEI (His-lPEI) exhibit the highest capacity (10.5 μg cm- 2  h versus 0.324 μg cm- 2  h) to cross TNF-α-induced inflamed endothelium model, but this positive effect is counterbalanced by the presence of IL-1β. His-lPEI polyplex TEP is also increased in the presence of IGF-1 (2.58 μg cm- 2  h). TEP of lipid-based DNA complexes including lipoplexes and lipopolyplexes was lowest compared with polymer-based DNA complexes. Overall, the results indicate that under inflammation, His-lPEI polyplexes have a good profile to cross a vascular endothelium of striated muscle with low cytotoxicity and high transfection efficiency of C2C12 myoblasts. These data provide insights concerning the endothelial passage of vectors in inflammatory conditions and can serve as a basis towards in vivo studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app