Add like
Add dislike
Add to saved papers

Human subthalamic nucleus - Automatic auditory change detection as a basis for action selection.

Neuroscience 2017 July 5
The subthalamic nucleus (STN) shapes motor behavior and is important for the initiation and termination of movements. Here we ask whether the STN takes aggregated sensory information into account, in order to exert this function. To this end, local field potentials (LFP) were recorded in eight patients suffering from Parkinson's disease and receiving deep-brain stimulation of the STN bilaterally. Bipolar recordings were obtained postoperatively from the externalized electrode leads. Patients were passively exposed to trains of auditory stimuli containing global deviants, local deviants or combined global/local deviants. The surface event-related potentials of the Parkinson's patients as well as those of 19 age-matched healthy controls were characterized by a mismatch negativity (MMN) that was most pronounced for the global/local double deviants and less prominent for the other deviant conditions. The left and right STN LFPs similarly were modulated by stimulus deviance starting at about 100ms post-stimulus onset. The MMN has been viewed as an index of an automatic auditory change detection system, more recently phrased in terms of predictive coding theory, which prepares the organism for attention shifts and for action. The LFP-data from the STN clearly demonstrate that the STN receives information on stimulus deviance, possibly as a means to bias the system to interrupt ongoing and to allow alternative actions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app