Add like
Add dislike
Add to saved papers

Particle concentrating and sorting under a rotating electric field by direct optical-liquid heating in a microfluidics chip.

We demonstrate a functional rotating electrothermal technique for rapidly concentrating and sorting a large number of particles on a microchip by the combination of particle dielectrophoresis (DEP) and inward rotating electrothermal (RET) flows. Different kinds of particles can be attracted (positive DEP) to or repelled (negative DEP) from electrode edges, and then the n-DEP responsive particles are further concentrated in the heated region by RET flows. The RET flows arise from the spatial inhomogeneous electric properties of fluid caused by direct infrared laser (1470 nm) heating of solution in a rotating electric field. The direction of the RET flows is radially inward to the heated region with a co-field (the same as the rotating electric field) rotation. Moreover, the velocity of the RET flows is proportional to the laser power and the square of the electric field strength. The RET flows are significant over a frequency range from 200 kHz to 5 MHz. The RET flows are generated by the simultaneous application of the infrared laser and the rotating electric field. Therefore, the location of particle concentrating can be controlled within the rotating electric field depending on the position of the laser spot. This multi-field technique can be operated in salt solutions and at higher frequency without external flow pressure, and thus it can avoid electrokinetic phenomena at low frequency to improve the manipulation accuracy for lab-on-chip applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app