Add like
Add dislike
Add to saved papers

Microeukaryote community in a partial nitritation reactor prior to anammox and an insight into the potential of ciliates as performance bioindicators.

New Biotechnology 2018 July 26
An in-depth, long-term, multidisciplinary study was conducted in order to study the microeukaryote community in a partial nitritation (PN) reactor prior to anammox. The PN reactor operated with moving bed biofilm reactor (MBBR) technology, using plastic supports (carriers) for biofilm development. The microeukaryote community from the biofilm (BF) and the surrounding media (mixed liquor or ML) were analysed separately. Despite the physicochemical conditions under which the PN-MBBR operated (an average of 305.9±117mg TAN l-1 and 328.4±131.9mg N-NO2 - l-1 ), up to 24 microeukaryotic taxa were observed by microscope. Microeukaryote species showed an uneven distribution in the PN-MBBR, thus suggesting the existence of two habitats: the BF, preferred by species with specific structures for adhering to a substrate, such as the stalked Peritrichia, and the ML, preferred by free-swimming or non-substrate dependent species. The results indicated that most ciliate population dynamics mainly responded to the nitrous acid and free ammonia concentrations and, to a lesser extent, to sCOD values. In the BF, variations in the population of Epistylis camprubii and Opercularia coarctata suggest the existence of competition between these species due to niche overlap. A V4 18S rDNA molecular survey (Illumina) was carried out for some samples with the aim of obtaining maximum coverage of the main eukaryote species that were microscopically detected throughout the study. The diversity and abundance data provided by both detection methods were compared. The study helped identify broader tolerance ranges of the microeukaryote taxa to the physicochemical parameters analysed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app