JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Application of Hydrogel Nanoparticles for the Capture, Concentration, and Preservation of Low-Abundance Biomarkers.

In the recent years, a lot of emphasis has been placed on the discovery and detection of clinically relevant biomarkers. Biomarkers are crucial for the early detection of several diseases, and they play an important role in the improvement of current treatments, thus reducing patient mortality rate. Because biofluids account to 60% of the body mass, they represent a goldmine of significant biomarkers. Unfortunately, because of their low concentration in body fluids, their lability, and the presence of high abundance proteins (i.e., albumin and immunoglobulins), low abundance biomarkers are difficult to detect with mass spectrometry or immunoassays. Nanoparticles made of poly(N-isopropylacrylamide) (NIPAm) and functionalized with affinity reactive baits allow researchers to overcome these physiological barriers and in one single step capture, concentrate, and preserve labile biomarkers in complex body fluids (i.e. urine, blood, sweat, CSF). Although hydrogel nanoparticles have been largely studied and used as a drug delivery tool, our application focuses on their capturing abilities instead of the releasing of specific drug molecules. Once the functionalized nanoparticles are incubated with a biological fluid, small biomarkers are captured by the affinity baits while unwanted high abundance analytes are excluded. The potentially relevant biomarkers are then concentrated into small volumes. The concentration factor (up to 10,000-fold) successfully enhances the detection sensitivity of mass spectrometry and immunoassays allowing the detection of previously invisible proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app