Add like
Add dislike
Add to saved papers

Osteogenic differentiation of mesenchymal stem cells is impaired by bone morphogenetic protein 7.

PURPOSE: Mesenchymal stem cells (MSCs) are multipotent adult stem cells and present in practically all tissues but originally identified within the bone marrow (BM). The differentiation potential of these cells is generally impaired when culturing in vitro for cell expansion. The aim of this study is to speedily increase the numbers of bone marrow derived mesenchymal stem cells (BM-MSCs) with substantially maintaining their differentiation potential in vitro and improving bone formation in vivo.

MATERIALS AND METHODS: BM-MSCs isolated from rats were sequentially cultured in α-MEM containing basic fibroblast growth factor (FGF2) and/or insulin to stimulate proliferation and osteogenic commitment, and in the medium with the addition of bone morphogenetic protein 2 (BMP2) and/or bone morphogenetic protein 7 (BMP7) to arouse differentiation. The expression of genes markedly associating the commitment and differentiation were investigated in vitro using real-time PCR technique and mineralization assay, while the capacity of inducing bone formation by the established conditions was determined in vivo using a rat model.

RESULTS: The BM-MSCs greatly proliferated with active transcription of runx2 and osterix genes when induced by FGF2 and insulin. The in vitro mineralization was enhanced by BMP2, but the extent was diminished when BMP2 was replaced or supplemented by BMP7. Formation of new small blood vessels was notably detected when the cells were respectively challenged by FGF2 plus insulin and BMP2.

CONCLUSION: These data are valuable in choosing growth factors for proper bone repair. However, optimization of the established system would be essential when the cells of human source are applied.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app