Add like
Add dislike
Add to saved papers

Proteolytic Post-Translational Processing of Adhesins in a Pathogenic Bacterium.

Mollicutes, including mycoplasmas and spiroplasmas, have been considered as good representatives of the « minimal cell » concept: these wall-less bacteria are small in size and possess a minimal genome and restricted metabolic capacities. However, the recent discovery of the presence of post-translational modifications unknown so far, such as the targeted processing of membrane proteins of mycoplasma pathogens for human and swine, revealed a part of the hidden complexity of these microorganisms. In this study, we show that in the phytopathogen, insect-vectored Spiroplasma citri GII-3 adhesion-related protein (ScARP) adhesins are post-translationally processed through an ATP-dependent targeted cleavage. The cleavage efficiency could be enhanced in vitro when decreasing the extracellular pH or upon the addition of polyclonal antibodies directed against ScARP repeated units, suggesting that modification of the surface charge and/or ScARP conformational changes could initiate the cleavage. The two major sites for primary cleavage are localized within predicted disordered regions and do not fit any previously reported cleavage motif; in addition, the inhibition profile and the metal ion requirements indicate that this post-translational modification involves at least one non-conventional protease. Such a proteolytic process may play a role in S. citri colonization of cells of the host insect. Furthermore, our work indicates that post-translational cleavage of adhesins represents a common feature to mollicutes colonizing distinct hosts and that processing of surface antigens could represent a way to make the most out of a minimal genome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app