Add like
Add dislike
Add to saved papers

Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus.

The main aim of the present study was to analyze salinity stress induced physiological and biochemical changes in a freshwater microalgae Acutodesmus dimorphus. During single-stage cultivation, the accumulations of lipids and carbohydrates increased with an increase in an initial salinity of the culture medium. The carbohydrate and lipid accumulations of 53.30±2.76% and 33.40±2.29%, respectively, were observed in 200mM NaCl added culture. During two-stage cultivation, salinity stress of 200mM was favorable for the growth up to 2days, as suggested by higher biomass, lower levels of oxidative stress biomarkers and no significant changes in the biochemical composition of the cells. Extending the stress to 3days significantly increased the lipid accumulation by 43% without affecting the biomass production. This study, thus, provides the strategy to improve the biofuel potential of A. dimorphus along with presenting the physiological adaptive mechanisms of a cell against salinity stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app