Add like
Add dislike
Add to saved papers

A sensitive signal-off electrogenerated chemiluminescence biosensing method for the discrimination of DNA hydroxymethylation based on glycosylation modification and signal quenching from ferroceneboronic acid.

Talanta 2017 August 2
In this study, a new and sensitive signal-off electrogenerated chemiluminescence (ECL) biosensing method for the quantification of 5-hydroxymethylcytosine in DNA (5-hmC-DNA) was developed. The method achieved simple and sensitive detection of 5-hmC-DNA based on the glycosylation of 5-hmC, combining both the amplification function of gold nanoparticles (AuNPs) and the high quenching efficiency of the tris(2, 2'-ripyridine) dichlororuthenium(II) (Ru(bpy)3 2+ )-ferrocene (Fc) system. First, the electrode modified with a mixture of Nafion and AuNPs was utilized as the platform for electrostatically adsorbing Ru(bpy)3 2+ (an ECL-emitting species) and assembling 5-hmC-DNA. The 5-hmC-DNA was glycosylated by T4 β-glucosyltransferase, yielding β-glucosyl-5-hydroxymethyl-cytosine in DNA (5-ghmC-DNA). Finally, quencher-FcBA was further covalently bound to 5-ghmC-DNA through formation of boronate ester covalent bonds between boronic acid and cis-diols of 5-ghmC, resulting in a decrease in ECL intensity. The results indicated that the decreased ECL intensity was directly linear to the concentration of 5-hmC-DNA in the range from 1.0×10-8 to 5.0×10-11 M with a low detection limit of 1.63×10-11 M. In addition, this ECL method was demonstrated to be useful for the quantification of 5-hmC in clinical serum samples. Moreover, the method allowed good discrimination among cytosine (5-C), 5-methylcytosine (5-mC), and 5-hmC in DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app