Add like
Add dislike
Add to saved papers

Detection of Aβ oligomers based on magnetic-field-assisted separation of aptamer-functionalized Fe 3 O 4 magnetic nanoparticles and BaYF 5 :Yb,Er nanoparticles as upconversion fluorescence labels.

Talanta 2017 August 2
A sensitive and stable bioassay for the detection of Aβ oligomer (Aβo), a potentially promising candidate biomarker for Alzheimer's disease (AD) diagnosis, was developed using Fe3 O4 magnetic nanoparticles (MNPs) as the recognition and concentration elements and BaYF5 :Yb,Er upconversion nanoparticles (UCNPs) as highly sensitive labels, conjugated with the Aβo aptamer (DNA1) and the complementary oligonucleotide of the Aβo aptamer (DNA2), respectively. The DNA1 hybridized with DNA2 to form the duplex structure on the surface of the MNPs/UCNPs nanocomposites probe. When the target Aβo was introduced, the aptamer DNA1 preferentially bound with Aβo and caused the dissociation of some complementary DNA2, liberating some UCNP-labeled complementary DNA2 and leading to a decreased upconversion fluorescent intensity on the surface of MNPs. The decreased fluorescence intensity of UCNPs was related to the concentration of Aβo in the range of 0.2-15nM with a detection limit of 36 pM. The developed method then was successfully applied to measure Aβo in artificial cerebrospinal fluid. Benefiting from the magnetic separation and concentration effect of MNPs, the high sensitivity of UCNPs, as well as the selectivity and stability of the aptamer, the present strategy offered valuable information related to early diagnosis of AD process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app