Add like
Add dislike
Add to saved papers

A novel magnetic/photoluminescence bifunctional nanohybrid for the determination of trypsin.

Talanta 2017 August 2
In this work, we have designed a novel kind of nanohybrid with magnetic and photoluminescence (PL) property for trypsin detection. The modified magnetic Fe3 O4 nanoparticles (MNPs) with polydopamine (PDA) and human serum albumin (HSA) were prepared through a one step self-polymerization under mild condition. The polydopamine (PDA) coating on MNPs can improve the biocompatibility of the MNP-PDA-HAS composite due to its hydrophilicity and multifunctional groups. When MNP-PDA-HSA composite was added into the Anti-HSA modified CdTe QDs (anti-HSA-QDs), HSA on the MNP-PDA-HSA composite was captured by the site of anti-HSA-QDs to form MNP-PDA-HSA/anti-HSA-QDs nanohybrid. Therefore, the photoluminescence of QDs can be quenched by Fe3 O4 nanoparticles due to the electron transfer. In the presence of trypsin, the protein (anti-HSA) was digested by trypsin and QDs was separated from the nanohybrid surface. As a result, the photoluminescence intensity of QDs was recovered. The magnetic/luminescent bifunctional nanohybrid displayed excellent analytical performance for the detection of trypsin in the range of 0.5-30μg/mL with a low detection limit of 0.25μg/mL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app