Add like
Add dislike
Add to saved papers

Arachidonic acid causes hidden blood loss-like red blood cell damage through oxidative stress reactions.

BACKGROUND: Hidden blood loss (HBL) often occurs in the prosthetic replacement for joint, but the mechanism is still not clear.

MATERIALS AND METHODS: This study tried to establish an animal model of HBL by injecting arachidonic acid (AA) into the Sprague-Dawley rats. Different concentrations of AA were injected into the tail veins of the rats, and blood samples were collected before and after administration at 24, 48, and 72 h. A complete blood count was obtained by to find the hemoglobin (Hb) and red blood cell (RBC) count changes. The glutathione peroxidase (GSH-PX) and total superoxide dismutase (T-SOD) activities and hydrogen peroxide (H2O2) levels were detected. The morphological changes of erythrocyte were observed under a polarizing microscope. The absorbance values of the blood samples were tested to determine the presence of ferryl Hb.

RESULTS: HBL occurred in the experimental groups when the concentration of AA reached 10 mmol/L; Hb and RBC values decreased sharply at 24- and 48-h postinjection. This was followed by reduced activities of GSH-PX and T-SOD and decreased levels of H2O2. Moreover, the pathologic changes of red cell morphology mainly presented as pleomorphic RBC morphology, including cell rupture. The absorbance values of the blood samples were in accordance with ferryl Hb features. RBC and Hb values were relatively stable at 72 h. The GSH-PX and T-SOD activities and H2O2 levels gradually increased up to a balanced state.

CONCLUSIONS: The study concluded that high concentrations of AA can induce oxidative stress reactions in the body, causing acute injury of RBCs, which is closely related to HBL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app