Add like
Add dislike
Add to saved papers

Dysregulation of the MEK/ERK/MNK1 signalling cascade by middle T antigen of the trichoydsplasia spinulosa polyomavirus.

BACKGROUND: Trichodysplasia spinulosa (TS) is a disfiguring folliculocentric cutaneous disease caused by infection with the trichodysplasia spinulosa polyomavirus (TSPyV). The TSPyV genome contains splice variants encoding the middle tumour (mT) antigen, although the potential role for TSPyV mT antigen in disease development remains unknown.

OBJECTIVE: The current study was designed to investigate the mechanistic properties of TSPyV mT antigen, which may further our understanding of TS pathogenesis and provide insight into potential therapies.

METHODS: A lentiviral packaging system was used to create an inducible cell line expressing TSPyV mT antigen. Proteins were extracted, separated by SDS-PAGE and subjected to Western blot analysis. Co-immunoprecipitation experiments and mutational analyses were also performed to evaluate protein-protein interactions of mT antigen.

RESULTS: We describe a novel mechanism of action for mT antigen that involves hyperactivation of MEK, ERK and MNK1. Our findings suggest that dysregulation of these key signalling molecules depends upon TSPyV mT antigen interaction with protein phosphatase 2A (PP2A) via intact Zn binding motifs.

CONCLUSION: Given that PP2A interaction and MEK/ERK/MNK1 phosphorylation are associated with high levels of cell proliferation and inflammation, our findings provide new evidence that TSPyV mT antigen may contribute to the pro-proliferative conditions that lead to TS development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app