JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

A New Mouse Model for Introduction of Aortic Aneurysm by Implantation of Deoxycorticosterone Acetate Pellets or Aldosterone Infusion in the Presence of High Salt.

Dysfunction of the renin-angiotensin-aldosterone system (RAAS) has been implicated in the etiologies of many cardiovascular diseases, including aortic aneurysm. In particular, the infusion of angiotensin II (Ang II) in the apolipoprotein E-deficient mice (apoE-/-) and low density lipoprotein receptor knockout mice (LDLR-/-) to induce aortic aneurysm has been extensively used in the field. In contrast, whether aldosterone (Aldo), an essential component of RAAS and a downstream effector of Ang II, is involved in aortic aneurysm is largely unknown. Here, we describe a new animal model for induction of aortic aneurysm in mice in which administration of deoxycorticosterone acetate (DOCA) and high salt or aldosterone and high salt, but not DOCA or high salt alone, to C57BL/6 male mice can potently induce aortic aneurysm formation and rupture in an age-dependent manner. This new aortic aneurysm mouse model is different from Ang II infusion mouse model and exhibits several unique features that mimic human aortic aneurysm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app