Add like
Add dislike
Add to saved papers

Theoretical study of noncovalent interactions in XCN···YO 2 H (X = F, Cl, Br, I; Y = P, As, Sb) complexes.

Noncovalent interactions in XCN···YO2 H (X = F, Cl, Br, I; Y = P, As, Sb) complexes were investigated using ab initio calculations at the MP2/aug-cc-pVDZ level of theory. There are four different configurations of these complexes, and the complexes are formed via hydrogen bonds, halogen bonds, π-hole interactions, or dual interactions. An examination of binding distances and interaction energies suggested that π-hole bonds are more stable than the other interactions. Molecular electrostatic potentials, electron densities, second-order stabilization energies, and electron density differences were computed to study the character of these interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app