JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Novel Fabrication and Enhanced Photocatalytic MB Degradation of Hierarchical Porous Monoliths of MoO 3 Nanoplates.

Scientific Reports 2017 May 13
Porous monoliths of MoO3 nanoplates were synthesized from ammonium molybdate (AHM) by freeze-casting and subsequent thermal treatment from 300 to 600 °C. Pure orthorhombic MoO3 phase was obtained at thermal treatment temperature of 400 °C and above. MoO3 monoliths thermally treated at 400 °C displayed bimodal pore structure, including large pore channels replicating the ice crystals and small pores from MoO3 sheets stacking. Transmission electron microscopy (TEM) images revealed that the average thicknesses of MoO3 sheet were 50 and 300 nm in porous monoliths thermally treated at 400 °C. The photocatalytic performance of MoO3 was evaluated through degradation of methylene blue (MB) under visible light radiation and MoO3 synthesized at 400 °C exhibited strong adsorption performance and best photocatalytic activity for photodegradation of MB of 99.7% under visible illumination for 60 min. MoO3 photocatalyst displayed promising cyclic performance, and the decolorization efficiency of MB solution was 98.1% after four cycles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app