JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Three-dimensional quantitative fracture analysis of tight gas sandstones using industrial computed tomography.

Scientific Reports 2017 May 13
Tight gas sandstone samples are imaged at high resolution industrial X-ray computed tomography (ICT) systems to provide a three-dimensional quantitative characterization of the fracture geometries. Fracture networks are quantitatively analyzed using a combination of 2-D slice analysis and 3-D visualization and counting. The core samples are firstly scanned to produce grayscale slices, and the corresponding fracture area, length, aperture and fracture porosity as well as fracture density were measured. Then the 2-D slices were stacked to create a complete 3-D image using volume-rendering software. The open fractures (vug) are colored cyan whereas the calcite-filled fractures (high density objects) are colored magenta. The surface area and volume of both open fractures and high density fractures are calculated by 3-D counting. Then the fracture porosity and fracture aperture are estimated by 3-D counting. The fracture porosity and aperture from ICT analysis performed at atmospheric pressure are higher than those calculated from image logs at reservoir conditions. At last, the fracture connectivity is determined through comparison of fracture parameters with permeability. Distribution of fracture density and fracture aperture determines the permeability and producibility of tight gas sandstones. ICT has the advantage of performing three dimensional fracture imaging in a non-destructive way.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app