Add like
Add dislike
Add to saved papers

Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation.

Acta Biomaterialia 2017 July 16
This study investigated whether a novel alkali-based surface modification enhances in vitro mineralization as well as in vivo bone formation around titanium (Ti) implants in a femoral condyle model of 36 male Wister rats. All implant surfaces were grit-blasted and then received either acid-etching treatment, alkali-based treatment, or were left untreated (controls). Histological and histomorphometrical analyses were performed on retrieved specimens after 4 and 8weeks of healing to assess peri-implant bone formation. Results of implants surface characterisation showed notable differences in the topography and composition of alkali-treated surfaces, reflecting the formation of submicron-structured alkali-titanate layer. In the in vitro test, alkali-treated Ti surfaces showed the ability to stimulate mineralization upon soaking in simulated body fluid (SBF). In vivo histomorphometrical analyses showed similar values for bone area (BA%) and bone-to-implant contact (BIC%) for all experimental groups after both 4- and 8-week implantation periods. In conclusion, the surface topography and composition of the grit-blasted Ti implants was significantly modified using alkali-based treatment. With respect to the present in vivo model, the biological performance of alkali-treated Ti implants is comparable to the commercially available, grit-blasted, acid-etched Ti implants.

STATEMENT OF SIGNIFICANCE: Since success rate of dental implants might be challenged in bone of low density, an optimum implant surface characteristic is demanding. In this work, alkali treatment of Ti implants showed significant advantage of surface mineralization upon soaking in simulated body fluid. Using an in vivo rat model, Ti surfaces with either acid-etching treatment or alkali-based treatment evoked robust bone formation around Ti implants. Such information may be utilized for the advancement of biomaterials research for bone implants in future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app