Add like
Add dislike
Add to saved papers

Novel glycolipid agents for killing cisplatin-resistant human epithelial ovarian cancer cells.

BACKGROUND: Chemotherapy resistance is one of the major factors contributing to mortality from human epithelial ovarian cancer (EOC). Identifying drugs that can effectively kill chemotherapy-resistant EOC cells would be a major advance in reducing mortality. Glycosylated antitumour ether lipids (GAELs) are synthetic glycolipids that are cytotoxic to a wide range of cancer cells. They appear to induce cancer cell death in an apoptosis-independent manner.

METHODS: Herein, the effectiveness of two GAELs, GLN and MO-101, in killing chemotherapy-sensitive and -resistant EOC cells lines and primary cell samples was tested using monolayer, non-adherent aggregate, and non-adherent spheroid cultures.

RESULTS: Our results show that EOC cells exhibit a differential sensitivity to the GAELs. Strikingly, both GAELs are capable of inducing EOC cell death in chemotherapy-sensitive and -resistant cells grown as monolayer or non-adherent cultures. Mechanistic studies provide evidence that apoptotic-cell death (caspase activation) contributes to, but is not completely responsible for, GAEL-induced cell killing in the A2780-cp EOC cell line, but not primary EOC cell samples.

CONCLUSIONS: Studies using primary EOC cell samples supports previously published work showing a GAEL-induced caspase-independent mechanism of death. GAELs hold promise for development as novel compounds to combat EOC mortality due to chemotherapy resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app