Add like
Add dislike
Add to saved papers

Projector Quantum Monte Carlo Method for Nonlinear Wave Functions.

We reformulate the projected imaginary-time evolution of the full configuration interaction quantum Monte Carlo method in terms of a Lagrangian minimization. This naturally leads to the admission of polynomial complex wave function parametrizations, circumventing the exponential scaling of the approach. While previously these functions have traditionally inhabited the domain of variational Monte Carlo approaches, we consider recent developments for the identification of deep-learning neural networks to optimize this Lagrangian, which can be written as a modification of the propagator for the wave function dynamics. We demonstrate this approach with a form of tensor network state, and use it to find solutions to the strongly correlated Hubbard model, as well as its application to a fully periodic ab initio graphene sheet. The number of variables which can be simultaneously optimized greatly exceeds alternative formulations of variational Monte Carlo methods, allowing for systematic improvability of the wave function flexibility towards exactness for a number of different forms, while blurring the line between traditional variational and projector quantum Monte Carlo approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app