Add like
Add dislike
Add to saved papers

Interaction-Driven Shift and Distortion of a Flat Band in an Optical Lieb Lattice.

We report the momentum-resolved measurement of Bloch bands in an optical Lieb lattice for a Bose-Einstein condensate (BEC). A BEC in the lattice is transported to a desired quasimomentum by applying a constant force. The energy dispersion of the lowest band is obtained by integrating measured group velocities. We also measure the gap from the lowest band to the higher bands with the same quasimomentum, which can be extracted from the oscillation of the sublattice populations after preparing a superposition of the band eigenstates. We show that the experimental results agree with a band calculation based on the Bogoliubov approximation. It is revealed that the second band, which should be flat in a single-particle description, is shifted and, in particular, distorted around the Brillouin zone edge as the interaction strength increases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app