JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Design of Benzoxathiazin-3-one 1,1-Dioxides as a New Class of Irreversible Serine Hydrolase Inhibitors: Discovery of a Uniquely Selective PNPLA4 Inhibitor.

The design and examination of 4,1,2-benzoxathiazin-3-one 1,1-dioxides as candidate serine hydrolase inhibitors are disclosed, and represent the synthesis and study of a previously unexplored heterocycle. This new class of activated cyclic carbamates provided selective irreversible inhibition of a small subset of serine hydrolases without release of a leaving group, does not covalently modify active site catalytic cysteine and lysine residues of other enzyme classes, and was found to be amenable to predictable structural modifications that modulate intrinsic reactivity or active site recognition. Even more remarkable and within the small pilot series of candidate inhibitors examined in an initial study, an exquisitely selective inhibitor for a poorly characterized serine hydrolase (PNPLA4, patatin-like phospholipase domain-containing protein 4) involved in adipocyte triglyceride homeostasis was discovered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app