Add like
Add dislike
Add to saved papers

MicroRNA-379-5p plays a tumor-suppressive role in human bladder cancer growth and metastasis by directly targeting MDM2.

Bladder cancer is the second most common urological malignancy in the US and is the most frequently diagnosed urological malignancy in China. An increasing amount of evidence indicates that microRNAs perform extremely important functions in many biological processes related to the formation and progression of cancers, including bladder cancer. Previous studies have reported that microRNA‑379-5p (miR-379-5p) is involved in tumour initiation and development in human cancers. However, the expression pattern, biological functions and the underlying mechanisms of miR-379-5p in bladder cancer remain unknown. The present study demonstrated that the expression levels of miR‑379-5p in bladder cancer tissues and cell lines were lower than the levels in adjacent normal tissues and the human bladder epithelial immortalized SV-HUC-1 cell line. Restoration of the expression of miR-379-5p inhibited bladder cancer cell proliferation, migration and invasion. Mouse double minute 2 (MDM2) was identified as a direct target gene of miR-379-5p. Furthermore, similar to miR-379-5p overexpression in bladder cancer cells, inhibition of MDM2 exerted tumor-suppressive effects. Rescue experiments showed that upregulation of MDM2 reversed the inhibitory effects of miR-379-5p on bladder cancer cell proliferation, migration and invasion. MDM2 was highly expressed and inversely correlated with miR-379-5p expression in bladder cancer tissues. These findings suggest that the miR-379-5p/MDM2 pathway plays an important role in bladder cancer and could serve as a potential candidate for bladder cancer therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app