JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Physiological responses to incremental, interval, and continuous counterweighted single-leg and double-leg cycling at the same relative intensities.

PURPOSE: We compared physiological responses to incremental, interval, and continuous counterweighted single-leg and double-leg cycling at the same relative intensities. The primary hypothesis was that the counterweight method would elicit greater normalized power (i.e., power/active leg), greater electromyography (EMG) responses, and lower cardiorespiratory demand.

METHODS: Graded-exercise tests performed by 12 men (age: 21 ± 2 years; BMI: 24 ± 3 kg/m2 ) initially established that peak oxygen uptake ([Formula: see text]; 76 ± 8.4%), expired ventilation ([Formula: see text]; 71 ± 6.8%), carbon dioxide production ([Formula: see text]; 71 ± 6.8%), heart rate (HRpeak; 91 ± 5.3%), and power output (PPO; 56 ± 3.6%) were lower during single-leg compared to double-leg cycling (main effect of mode; p < 0.05). On separate days, participants performed four experimental trials, which involved 30-min bouts of either continuous (50% PPO) or interval exercise [4 × (5-min 65% PPO + 2.5 min 20% PPO)] in a single- or double-leg manner.

RESULTS: Double-leg interval and continuous cycling were performed at greater absolute power outputs but lower normalized power outputs compared to single-leg cycling (p < 0.001). The average EMG responses from the vastus lateralis and vastus medialis were similar across modes (p > 0.05), but semitendinosus was activated to a greater extent for single-leg cycling (p = 0.005). Single-leg interval and continuous cycling elicited lower mean [Formula: see text], [Formula: see text], [Formula: see text], HR and ratings of perceived exertion compared to double-leg cycling (p < 0.05).

CONCLUSIONS: Counterweighted single-leg cycling elicits lower cardiorespiratory and perceptual responses than double-leg cycling at greater normalized power outputs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app