JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Operational lifetimes of organic light-emitting diodes dominated by Förster resonance energy transfer.

Scientific Reports 2017 May 12
Organic light-emitting diodes are a key technology for next-generation information displays because of their low power consumption and potentially long operational lifetimes. Although devices with internal quantum efficiencies of approximately 100% have been achieved using phosphorescent or thermally activated delayed fluorescent emitters, a systematic understanding of materials suitable for operationally stable devices is lacking. Here we demonstrate that the operational stability of phosphorescent devices is nearly proportional to the Förster resonance energy transfer rate from the host to the emitter when thermally activated delayed fluorescence molecules are used as the hosts. We find that a small molecular size is a requirement for thermally activated delayed fluorescence molecules employed as phosphorescent hosts; in contrast, an extremely small energy gap between the singlet and triplet excited states, which is essential for an efficient thermally activated delayed fluorescent emitter, is unnecessary in the phosphorescent host.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app