Add like
Add dislike
Add to saved papers

Relative Initial Weight Is Associated with Improved Survival without Altering Tumor Latency in a Translational Rat Model of Diethylnitrosamine-Induced Hepatocellular Carcinoma and Transarterial Embolization.

PURPOSE: To test the hypotheses that (i) heavier rats demonstrate improved survival with diminished fibrosis in a diethylnitrosamine (DEN)-induced model of hepatocellular carcinoma (HCC) and (ii) transarterial embolization via femoral artery access decreases procedure times versus carotid access.

MATERIALS AND METHODS: One hundred thirty-eight male Wistar rats ingested 0.01% DEN in water ad libitum for 12 weeks. T2-weighted magnetic resonance imaging was used for tumor surveillance. Rats underwent selective embolization of ≥ 5 mm tumors via carotid or femoral artery catheterization under fluoroscopic guidance. Rats were retrospectively categorized into 3 groups by initial weight (< 300, 300-400, > 400 g) for analyses of survival, tumor latency, and fibrosis. Access site was compared relative to procedural success, mortality, and time.

RESULTS: No significant differences in tumor latency were related to weight group (P = .310). Rats weighing < 300 g had shorter survival than both heavier groups (mean, 88 vs 108 d; P < .0001), and more severe fibrosis (< 300 g median, 4.0; 300-400 g median, 1.5; > 400 g median, 1.0; P = .015). No significant difference was found in periprocedural mortality based on access site; however, procedure times were shorter via femoral approach (mean, 71 ± 23 vs 127 ± 24 min; P < .0001).

CONCLUSIONS: Greater initial body weight resulted in improved survival without prolonged tumor latency for rats with DEN-induced HCCs and was associated with less severe fibrosis. A femoral approach for embolization resulted in decreased procedure time. These modifications provide a translational animal model of HCC and transarterial embolization that may be suited for short-term survival studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app