Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Development of molecular tools based on the dopamine D 3 receptor ligand FAUC 329 showing inhibiting effects on drug and food maintained behavior.

Dopamine D3 receptor-mediated networks have been associated with a wide range of neuropsychiatric diseases, drug addiction and food maintained behavior, which makes D3 a highly promising biological target. The previously described dopamine D3 receptor ligand FAUC 329 (1) showed protective effects against dopamine depletion in a MPTP mouse model of Parkinson's disease. We used the radioligand [18 F]2, a [18 F]fluoroethoxy substituted analog of the lead compound 1 as a molecular tool for visualization of D3 -rich brain regions including the islands of Calleja. Furthermore, structural modifications are reported leading to the pyrimidylpiperazine derivatives 3 and 9 displaying superior subtype selectivity and preference over serotonergic receptors. Evaluation of the lead compound 1 on cocaine-seeking behavior in non-human primates showed a substantial reduction in cocaine self-administration behavior and food intake.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app