Add like
Add dislike
Add to saved papers

N-methyl-d-aspartate receptor-mediated calcium overload and endoplasmic reticulum stress are involved in interleukin-1beta-induced neuronal apoptosis in rat hippocampus.

Increased levels of interleukin (IL)-1β and its gene expression are implicated in the etiology of Alzheimer's disease (AD). IL-1β activates microglia and stimulates glutamatergic N-methyl-d-aspartate receptor NMDA receptor expression, thereby disturbing intracellular Ca(2+) homeostasis. Ca(2+) disequilibrium, in turn, may trigger endoplasmic reticulum (ER) stress, contributing to overall excitotoxicity and neuronal death that evoke AD. However, it is unclear whether IL-1β-induced neuronal apoptosis is mediated by the glutamatergic system, ER stress and/or Ca(2+) dysfunction. The present study investigated the role of NMDA receptor (NMDAR) in ER stress and IL-1β-evoked neuronal death by assessing NMDAR-induced Ca(2+) overload and NMDA-mediated ER stress. Male Long Evans rats were treated with IL-1β (with or without NMDAR antagonist MK801) injected intracerebroventricularly for 8days. Glutamate concentration was measured by HPLC, and mRNA and protein expression of microglial biomarkers and NMDAR, as well as markers of Ca(2+) overload (caplain2) and ER stress (glucose-regulated protein 78, GRP78, and C/EBP homologous protein-10, CHOP), were assessed by real-time PCR and western blot. Apoptosis was also evaluated in the hippocampal neurons using TUNEL. Overall, IL-1β induced robust neuronal apoptosis, accompanied by upregulated NMDAR, caplain2, GRP78 and CHOP. MK801 pretreatment significantly attenuated neuronal apoptosis and NMDA up-regulation, also reducing GRP78 and CHOP expression. In summary, these results suggest that IL-1β may disturb intracellular Ca(2+) homeostasis via NMDAR-mediated mechanism, thereby triggering neuronal apoptosis by enhancing ER stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app