COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Retention in high-performance liquid chromatography at -196°C.

Recently, we have developed ultralow-temperature high-performance liquid chromatography (HPLC) at -196°C using liquid nitrogen-based mobile phases. In this study, a retention model for ultralow-temperature HPLC, in which adsorption exchange and "pseudo partition" modes are combined, is proposed to describe the effect of the mobile phase composition on the retention of analytes. The experimental results agreed well with the equation of the proposed model. It was revealed that, in the low and high additive concentration regions, adsorption exchange and pseudo partition retention, respectively, dominate the analyte retention. The difference in the retention behavior between bare-silica and octadecylsilyl-modified silica (ODS) columns was also studied. Retention of alkanes in the ODS column was greater than that in the bare-silica one. Addition of both ethane and ethylene to the mobile phase in the ODS column afforded the elution of propylene, which was not eluted with the bare-silica column at -196°C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app