Journal Article
Review
Add like
Add dislike
Add to saved papers

Computational Methods for Predicting ncRNA-protein Interactions.

BACKGROUND: RNA-protein interactions (RPIs) play an important role in many cellular processes. In particular, noncoding RNA-protein interactions (ncRPIs) are involved in various gene regulations and human complex diseases. High-throughput experiments have provided a large number of valuable information about ncRPIs, but these experiments are expensive and timeconsuming. Therefore, some computational approaches have been developed to predict ncRPIs efficiently and effectively.

METHODS: In this work, we will describe the recent advance of predicting ncRPIs from the following aspects: i) the dataset construction; ii) the sequence and structural feature representation, and iii) the machine learning algorithm.

RESULTS: The current methods have successfully predicted ncRPIs, but most of them trained and tested on the small benchmark datasets derived from ncRNA-protein complexes in PDB database. The generalization performance and robust of these existing methods need to be further improved.

CONCLUSION: Concomitant with the large numbers of ncRPIs generated by high-throughput technologies, three future directions for predicting ncRPIs with machine learning should be paid attention. One direction is that how to effectively construct the negative sample set. Another is the selection of novel and effective features from the sequences and structures of ncRNAs and proteins. The third is the design of powerful predictor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app