Add like
Add dislike
Add to saved papers

Genes Involved in Neurodevelopment, Neuroplasticity, and Bipolar Disorder: CACNA1C, CHRNA1, and MAPK1.

BACKGROUND: Bipolar disorder (BPD) is a common and severe mental disorder. The involvement of genetic factors in the pathophysiology of BPD is well known. In the present study, we tested the association of several single-nucleotide polymorphisms (SNPs) within 3 strong candidate genes (CACNA1C, CHRNA7, and MAPK1) with BPD. These genes are involved in monoamine-related pathways, as well as in dendrite development, neuronal survival, synaptic plasticity, and memory/learning.

METHODS: One hundred and thirty-two subjects diagnosed with BPD and 326 healthy controls of Korean ancestry were genotyped for 40 SNPs within CACNA1C, CHRNA17, and MAPK1. Distribution of alleles and block of haplotypes within each gene were compared in cases and controls. Interactions between variants in different loci were also tested.

RESULTS: Significant differences in the distribution of alleles between the cases and controls were detected for rs1016388 within CACNA1C, rs1514250, rs2337980, rs6494223, rs3826029 and rs4779565 within CHRNA7, and rs8136867 within MAPK1. Haplotype analyses also confirmed an involvement of variations within these genes in BPD. Finally, exploratory epistatic analyses demonstrated potential interactive effects, especially regarding variations in CACNA1C and CHRNA7.

LIMITATIONS: Limited sample size and risk of false-positive findings.

DISCUSSION: Our data suggest a possible role of these 3 genes in BPD. Alterations of 1 or more common brain pathways (e.g., neurodevelopment and neuroplasticity, calcium signaling) may explain the obtained results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app