Add like
Add dislike
Add to saved papers

In vitro Growth Pattern of Primary Human Osteoblasts on Calcium Phosphate- and Polymethylmethacrylate-Based Bone Cement.

BACKGROUND/PURPOSE: Polymethylmethacrylate (PMMA) and calcium phosphate (Ca-P) cements are widely used for arthroplasty surgery and augmentation of bone defects. However, aseptic implant loosening in absence of wear-induced osteolysis indicates an unfavourable interaction between the cement surface and human osteoblasts. Our underlying hypothesis is that cement surfaces directly modify cell viability, proliferation rate, and cell differentiation.

METHODS: To test this hypothesis, we examined primary human osteoblasts harvested from six individuals. These cells were pooled and subsequently seeded directly on cement pellets prepared from Palacos® R, Palacos® R+G, and Norian® Drillable cements. After incubation for 24 and 72 h, cell viability, proliferation rate, apoptosis rate, and cell differentiation were analysed.

RESULTS: Upon cultivation of human osteoblasts on cement surfaces, we observed a significantly reduced cell viability and DNA content compared to the control. Analysis of the apoptosis rate revealed an increase for cells on Palacos R and Norian Drillable, but a significant decrease on Palacos R+G compared to the control. Regarding osteogenic differentiation, significantly lower values of alkaline phosphatase enzyme activity were identified for all cement surfaces after 24 and 72 h compared to cultivation on tissue culture plastic, serving as control.

CONCLUSIONS: In summary, these data suggest a limited biocompatibility of both PMMA and Ca-P cements, necessitating further research to reduce unfavourable cell-cement interactions and consequently extend implant survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app